What is GPS? A Back to Basics Refresher

Digital Matter Support

Is it just us, or are there too many tracking-related acronyms flying around the internet these days? GPS, GLONASS, GNSS, NFC, IoT, BLE…the list goes on and on! In this “back to basics” terminology refresher, we’ll go over:

  • What is GPS?
  • How does it work?
  • Is tracking with GPS always the right solution?

What is GPS?

The GPS (Global Positioning System) is a satellite-based navigation system made available to the public in the 1980s and is now the standard for location-based tracking. Today, the United States (GPS), Russia (GLONASS), Europe (Galileo), and China (BeiDou) all maintain operational satellites, enabling coverage 24 hours a day, for all weather conditions across the globe. For improved reliability and accuracy, our GPS tracking devices support both GPS and GLONASS concurrently.

How does GPS work?

As these satellites orbit Earth, their unique signals and orbital elements are transmitted to GPS-enabled devices, like traditional tracking devices, mobile phones, or on-board navigation systems. Based on the amount of time it takes to receive these signals, the GPS devices compute how far away they are from these satellites and determine their position.

Once the GPS-enabled device knows its location, it still needs to communicate the coordinates. GPS devices often also house SIM cards, which are used to transmit their location to users over cellular networks where coordinates are finally decoded and presented in tracking apps or software. GPS devices can also calculate other information:

  • Speed
  • Trip distance
  • Distance to destination
  • Timing
  • And more

Is Tracking with GPS Always the Right Solution?

Due to the profusion of global satellites in orbit, GPS tracking is highly accurate, often within a few feet or meters. However, there can be obstacles that hinder its accuracy:

  • Satellite signal blockage (physical obstructions)
  • Atmospheric Effects
  • Multipath errors
  • Signal Interference

Also, as new technology such as the Internet of Things (IoT), or device-to-device tracking applications become more and more prevalent, GPS is not always the most reliable or affordable solution.

IoT tracking and monitoring applications require long-life, often battery-powered devices. Extremely low energy consumption is also needed to prolong the life of the tracking device. Though exceedingly accurate, GPS devices use a considerable amount of energy coordinating their positions, which is not a viable solution for IoT. Satellite signals are also substantially weakened indoors, so reliably tracking in warehouses, airports, and underground parking lots, for example, isn’t possible.

Bluetooth® and Bluetooth® Low Energy (BLE) devices enable near field communication (NFC) using a system of gateways and tags. BLE devices transmit small amounts of data over short distances with substantially reduced power consumption. Our newest range of traditional GPS tracking devices, for example, are developed with BLE technology to support concurrent satellite-based location and NFC with lower-valued tagged assets, enhancing traditional GPS tracking applications. Bluetooth® tags also don’t require the use of SIM cards, which means no ongoing connectivity costs, which most traditional GPS devices incur.

Find out more about Asset Tracking with Bluetooth® here.

WiFi sniffing is another alternative to GPS and is particularly well suited for tracking assets indoors. Tracking devices with WiFi sniffing scan for all WiFi access points in a vicinity. The device doesn’t connect to these WiFi networks, it simply assesses which networks it is near and their signal strengths to assist in the positioning algorithm. Our WiFi sniffing devices access on average 15 different networks while determining positioning, for location accuracy between 10 and 44 yards depending on signal strength.

Related Articles

Digital Matter achieves Microsoft Gold Application Development and Integration Certifications

Digital Matter Achieves Microsoft Gold Application...

September 09, 2021

Digital Matter has earned Microsoft Gold Certification with best-in-class technical competencies in Application Developm...

Read more
NB-IoT Asset Tracking in South Africa – Vodacom Network Coverage and Performance Testing

Nb-iot Asset Tracking In South Africa – Vodacom ...

September 03, 2021

We’re excited to report Vodacom’s NB-IoT network coverage across South Africa is expanding, significantly broadening...

Read more
In IoT Device Design, Size Matters

In Iot Device Design, Size Matters

August 03, 2021

Designing IoT devices to support varying performance, battery life, and accuracy requirements.

Read more
Digital Matter Awarded 2021 IoT Evolution Product of the Year Award

Digital Matter Awarded 2021 Iot Evolution Product ...

July 19, 2021

Yabby Edge Indoor/Outdoor Asset Tracker Honored for Exceptional Innovation

Read more
Solar-Powered GPS Trackers vs Battery-Powered

Solar-powered Gps Trackers Vs Battery-powered

June 24, 2021

Learn more about the limitations of solar-powered GPS trackers for IoT asset tracking applications.

Read more