What is GPS? A Back to Basics Refresher

Digital Matter Support

Is it just us, or are there too many tracking-related acronyms flying around the internet these days? GPS, GLONASS, GNSS, NFC, IoT, BLE…the list goes on and on! In this “back to basics” terminology refresher, we’ll go over:

  • What is GPS?
  • How does it work?
  • Is tracking with GPS always the right solution?

What is GPS?

The GPS (Global Positioning System) is a satellite-based navigation system made available to the public in the 1980s and is now the standard for location-based tracking. Today, the United States (GPS), Russia (GLONASS), Europe (Galileo), and China (BeiDou) all maintain operational satellites, enabling coverage 24 hours a day, for all weather conditions across the globe. For improved reliability and accuracy, our GPS tracking devices support both GPS and GLONASS concurrently.

How does GPS work?

As these satellites orbit Earth, their unique signals and orbital elements are transmitted to GPS-enabled devices, like traditional tracking devices, mobile phones, or on-board navigation systems. Based on the amount of time it takes to receive these signals, the GPS devices compute how far away they are from these satellites and determine their position.

Once the GPS-enabled device knows its location, it still needs to communicate the coordinates. GPS devices often also house SIM cards, which are used to transmit their location to users over cellular networks where coordinates are finally decoded and presented in tracking apps or software. GPS devices can also calculate other information:

  • Speed
  • Trip distance
  • Distance to destination
  • Timing
  • And more

Is Tracking with GPS Always the Right Solution?

Due to the profusion of global satellites in orbit, GPS tracking is highly accurate, often within a few feet or meters. However, there can be obstacles that hinder its accuracy:

  • Satellite signal blockage (physical obstructions)
  • Atmospheric Effects
  • Multipath errors
  • Signal Interference

Also, as new technology such as the Internet of Things (IoT), or device-to-device tracking applications become more and more prevalent, GPS is not always the most reliable or affordable solution.

IoT tracking and monitoring applications require long-life, often battery-powered devices. Extremely low energy consumption is also needed to prolong the life of the tracking device. Though exceedingly accurate, GPS devices use a considerable amount of energy coordinating their positions, which is not a viable solution for IoT. Satellite signals are also substantially weakened indoors, so reliably tracking in warehouses, airports, and underground parking lots, for example, isn’t possible.

Bluetooth® and Bluetooth® Low Energy (BLE) devices enable near field communication (NFC) using a system of gateways and tags. BLE devices transmit small amounts of data over short distances with substantially reduced power consumption. Our newest range of traditional GPS tracking devices, for example, are developed with BLE technology to support concurrent satellite-based location and NFC with lower-valued tagged assets, enhancing traditional GPS tracking applications. Bluetooth® tags also don’t require the use of SIM cards, which means no ongoing connectivity costs, which most traditional GPS devices incur.

Find out more about Asset Tracking with Bluetooth® here.

WiFi sniffing is another alternative to GPS and is particularly well suited for tracking assets indoors. Tracking devices with WiFi sniffing scan for all WiFi access points in a vicinity. The device doesn’t connect to these WiFi networks, it simply assesses which networks it is near and their signal strengths to assist in the positioning algorithm. Our WiFi sniffing devices access on average 15 different networks while determining positioning, for location accuracy between 10 and 44 yards depending on signal strength.

Related Articles

Global IoT Roaming on Cellular LTE-M and NB-IoT Networks

Global Iot Roaming On Cellular Lte-m And Nb-iot Ne...

December 02, 2021

Cellular IoT roaming on LTE-M/NB-IoT enables new asset tracking applications in supply chain, connected packaging, parts...

Read more
3G Network Sunsets in the U.S. – AT&T, Verizon, T-Mobile

3g Network Sunsets In The U.s. – At&t, ...

December 02, 2021

Prepare for 2022 3G network sunsets in the United States with future-proofed, LTE-M/NB-IoT asset tracking hardware.

Read more
GNSS Performance and Accuracy Improvements on Yabby Edge Cellular

Gnss Performance And Accuracy Improvements On Yabb...

November 30, 2021

We're excited to report GNSS performance and accuracy improvements on the Yabby Edge Cellular (LTE-M/NB-IoT) with our la...

Read more
2022 Hardware Roadmap: Next-Generation OBDII & Wired Devices (Cellular)

2022 Hardware Roadmap: Next-generation Obdii &...

November 30, 2021

Learn more about the next-gen versions of Digital Matter's OBDII and wired GPS tracking devices for vehicles, fleet mana...

Read more
Helium and Digital Matter Release 2021 State of IoT Asset Tracking Report

Helium And Digital Matter Release 2021 State Of Io...

November 04, 2021

New 2021 report explores IoT asset tracking demand, business applications, barriers to adoption and more.

Read more